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Unsteady fully-developed flow in a curved pipe
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Abstract. It is shown that the boundary layer which develops from rest in a loosely coiled pipe of circular cross-
section, following the imposition of a constant pressure gradient, terminates in singular behaviour at the inside
bend after a finite time. This singularity of the boundary-layer equations is interpreted as an eruption of boundary-
layer fluid into the interior or core flow. This result complements earlier work by Stewartsonet al.[1] who consider
the steady inlet flow to a curved pipe at high Dean number. In that case a singularity also develops, now at a finite
distance from the entrance at the inside bend, which is again interpreted in terms of a boundary-layer collision or
eruption.
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1. Introduction

The flow in a curved pipe, whether laminar or turbulent, is of importance, for example, in
problems as diverse as heat exchangers and the aorta. Fully-developed steady flow in terms
of small values of a parameter that characterises the flow, and which bears his name, was
first studied by Dean [2, 3]. It is the flow at high Dean number that has attracted most recent
attention however, and which is of concern to us here. Accurate and extensive calculations
of the steady, laminar, fully-developed flow in a loosely coiled pipe of circular cross-section,
using the full equations, have been carried out by Collins and Dennis [4], and Dennis [5]. From
these, as the Dean number increases, an asymptotic structure emerges in which an inviscid
interior, or core, flow is flanked by a boundary layer at the pipe wall. Approximate theories, at
high Dean number, based on this idea have been presented by Barua [6] and Ito [7]. However
such asymptotic theories have never been made precise and fully consistent. The relationship
between asymptotic theory and the full results has been surveyed by Dennis and Riley [8] and,
in particular, the technical difficulties associated with the former have been outlined.

In this paper we consider an unsteady problem associated with the configuration under
consideration, namely the fully-developed laminar flow when a constant pressure gradient
along the pipe is suddenly imposed. By fully developed we imply that flow conditions are
independent of distance measured axially along the pipe. This problem has previously been
considered by Lam [9], the major difference is that Lam works throughout with aLagrangian
flow description, see Van Dommelen and Cowley [10] for details of this approach, whilst we
adopt a more conventional Eulerian formulation. Attention should also be drawn to earlier
work by Farthing [11] who considers the initial development in time by a series approach (see
also Pedley [12]).

We identify time scales on which the core and boundary-layer flows develop. The latter is
the shorter, and is the time scale adopted. The investigation of an unsteady flow complements
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Figure 1. Definition sketch.

that of Stewartsonet al. [1] who consider the steady entry flow to a curved pipe. In that case
there are two axial length scales involved, and the shorter is the scale on which the boundary
layer develops. In both [1] and here the axial core flow is taken to be uniform. Our study
focuses on the flow at the inside bend of the pipe; by contrast Lam [9] traces the boundary
layer from its origins at the outside bend up to the inside bend. The main feature of the flow is
that after a finite time, the boundary-layer solution develops a singularity which, in the context
of the flow overall, may be interpreted as the manifestation of an eruption of the boundary-
layer fluid into the core. This in turn will lead to a modification of the core flow as it evolves
towards a steady state.

Singular behaviour at the inside bend in the steadily developing flow [1] is also encoun-
tered, at a finite distance downstream from the inlet, with the same interpretation. However, the
singularity structure differs in the two cases. For example, in the present case the axial shear
stress remains finite, whilst in [1] it vanishes, suggesting some form of axial flow separation.
The structure of the singularity, discussed in Section 4 below, is of the form introduced by
Banks and Zaturska [13] in their study of the flow at the equator of a rotating sphere started
from rest. Both the flows considered here, and in [13], are essentially two-dimensional in
their terminal stages, which suggests that the singular behaviour uncovered in [13] has wide
applicability. We conclude by discussing the implications of our present work, and that of [1],
for the structure of the fully-developed steady flow at high Dean number.

2. Equations of motion

For the problem under consideration, namely the fully-developed unsteady flow in a loosely
coiled pipe of circular cross-section(a/L� 1, see Figure 1), we may write the dimensionless
equations for incompressible flow as, neglecting terms of relative ordera/L,
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In these equations lengths are scaled witha, the axial velocityw has been scaled withν
(L/2a3)

1
2 , the stream functionφ with ν and timet with a typical timet0 to be chosen. The
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transverse and radial components of velocity in the cross-flow plane are given, respectively,
by

u = −∂φ

∂r
, v = 1

r

∂φ

∂α
. (2.3)

The dimensionless parametersD,T in the above are defined as

D = Ga3(2a/L)
1
2 /ρν2, T = νt0/a

2, (2.4)

whereG = L−1∂p/∂θ is the constant axial pressure gradient. The parameterD is a form of
the Dean number, in particular that adopted by Collins and Dennis [4] where its relationship
to an alternative form used by some authors is discussed.

For fully-developed steady flow Dennis and Riley [8] following Ito [7] have argued that in
the core, outside any boundary layers that form whenD � 1, φ = O(D

1
3 ),w = O(D

2
3 );

these scales are supported by the numerical solutions of the full Navier-Stokes equations
presented by Collins and Dennis [4]. A time scale for the transverse motion in the core region
is thena/Vt , whereVt = O(νD

1
3 /a), so thatt0 = a2D−

1
3 /ν = tc say. On this time scale, with
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3 wc andD � 1, Equations (2.1) and (2.2) become, at leading order,

∂wc

∂t
+ 1

r

(
−∂φc

∂r

∂wc

∂α
+ ∂φc

∂α

∂wc

∂r

)
= 1, (2.5)

wc

(
sin α

∂wc

∂r
+ cosα

r

∂wc

∂α

)
= 0. (2.6)

With wc 6= 0, and introducing the Cartesian co-ordinates of Figure 1, Equations (2.5) and
(2.6) become
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from which we deduce that

wc = f (x, t), φc = 1− ft

fx
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wheref, g are arbitrary.
Consider next the boundary layer atr = 1 associated with this core flow. If we write
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so thatv is measured in the direction ofζ increasing, Equation (2.1) becomes, at leading order,
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Equation (2.10) indicates that an appropriate time scale for the developing boundary layer
is t0 = a2D−

2
3 /ν = tb say. We see then thattb = D−

1
3 tc, which shows that changes to the core

flow take place on a time scale which is much longer than the time scale for changes in the
boundary layer. On the shorter time scaletb, Equation (2.8) is unchanged to givewc = f (x, t),
but (2.7) now shows thatf is independent oft . With an impulsively applied pressure gradient
at t = 0 we take, without loss of generality,wc ≡ 1. It is of interest at this stage to make
a comparison with the work of Stewartson, Cebeci and Chang [1]. They consider the steady
developing flow in a loosely coiled pipe with a uniform axial flow on entry. Consistent with
the above, it is found that changes within the boundary layer take place on an axial length
scale much smaller than that on which changes in the core take place, which leads towc ≡ 1
for the purposes of the boundary-layer calculation.

On the time scaletb we may write our boundary-layer equations, integrating the boundary-
layer form of (2.2) once and introducing the velocity components (2.9), as

∂u

∂α
+ ∂v

∂ζ
= 0, (2.11)

∂u

∂t
+ u

∂u

∂α
+ v

∂u

∂ζ
+ 1

2 sin α(w2− 1) = ∂2u

∂ζ 2
, (2.12)

∂w

∂t
+ u

∂w

∂α
+ v

∂w

∂ζ
= ∂2w

∂ζ 2
. (2.13)

The boundary conditions that must be satisfied, for a flow started from rest, are as follows:

u = v = w = 0, at ζ = 0, t > 0,

u→ 0, w→ 1 as ζ →∞, t > 0,

u = 0, w = 1 at t = 0, ζ > 0.

 (2.14)

3. Solution procedure

At the initial instant a vortex sheet is created atζ = 0. To accommodate this singular behav-
iour, and resolve the structure of the growing boundary layer for smallt , it proves convenient
to introduce new time and space co-ordinates as
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so that Equations (2.11) to (2.13) become
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together with

u = v = w = 0, at η = 0, t > 0,

u→ 0, w→ 1 as η→∞, τ > 0,

u = 0, w = 1 at τ = 0, η > 0.

 (3.5)

The solution atτ = 0 is simplyu = v = 0, w = erf(1
2η), which provides the initial solution

for a time-marching numerical solution of equations (3.2) to (3.5).
To carry out an integration, in time, of the above equations for allα andη is a formidable

task. However, it is the solution at the inside bend,α = π , that is of greatest interest to us.
As we discuss in Section 5 below, it is this point that appears to cause problems in any steady
solution of (2.11) to (2.14) and, furthermore, the work of Stewartsonet al. [1] shows that an
eruption of fluid takes place atα = π at a finite axial distance from the inlet in the steady
developing flow. This eruption manifests itself as a singularity in the solution alongα = π .

To analyse the solution close toα = π we write
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U = V = W = 0 at η = 0, τ > 0
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}
(3.10)

and the initial solution, atτ = 0,

U = V = 0, W = erf(1
2η). (3.11)

Since we may expectU > 0 for α < π , the solution close toα = π cannot be uninfluenced
by conditions inα < π . However, in this as in other similar problems, for example that
considered by Stewartsonet al. [1], as a singular behaviour of the solution is approached,
which in the case under consideration we interpret as an eruption of fluid from the boundary
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layer into the core, the essential character of the solution will be uninfluenced by conditions
in α < π .

To solve Equations (3.7) to (3.9) subject to (3.10), with (3.11) as an initial solution, we
have discretised the equations using central differences throughout. For the results presented
in Section 4 we have set the outer boundary atη∞ = 2000 with a step-lengthδη = 0·01 in the
η-direction. The initial time stepδτ = 0·001 reducing to 0·0001 atτ = 0·75, to 0·00002 at
τ = 0·79895, to 0·00001 atτ = 0·79909. The solution has been continued up toτ = 0·79912.
From the checks we have carried out on grid sizes we are satisfied with the results presented
below, subject to qualifications that we fully discuss.

(a) (b)

(c)

Figure 2. Computed profilesU(τ, η),W(τ, η) at various values ofτ : (a) τ = 0·4, (b)τ = 0·79, (c)τ = 0·7985.
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4. Results

Following the initial impulse, the axial boundary layer grows like the boundary layer on a
flat plate, as in Equation (3.11). Only as the cross-flow boundary layer develops will this be
modified. In Figure 2(a) we show the profilesU,W at τ = 0·4 (t = 0·6667). Clearly, at this
time, the cross-flow has had little influence on the axial velocity distribution given in (3.11).
However, atτ = 0·79 (t = 3·7619) we see, in Figure 2(b), that the axial profile has now
developed a clear point of inflexion. The cross-flow is now more significant, and the boundary
layer is growing in thickness at a much faster rate than can be accounted for by pure diffusion.
As the outer part of the boundary layer is forced away from the boundary we may make a
comparison with the work of Stewartsonet al. [1]. In their study of the inlet flow to a loosely
coiled pipe they also record a rapid thickening of the boundary layer at the inside bend of
the pipe prior to the development of a singularity which heralds the eruption of fluid from
the boundary layer to the core. However, there is a significant difference between the two
solutions. In the present study the axial shear stress atα = π, ∂W/∂ζ |ζ=0, remains finite as
the eruptive singularity is approached. But in [1] that quantity approaches zero, suggesting
some form of streamwise separation. Our unsteady problem is much more closely related to
the work of Banks and Zaturska [13]. They consider the boundary layer on a sphere that is set
into rotational motion, impulsively, about a fixed axis. The boundary layer that is formed on
the sphere develops a singularity at the equator, which again may be interpreted as an eruption
of fluid from that region. In that problem there is a well-established steady state in which fluid
is flung from the equatorial region to form a swirling radial jet. Although the problem under
consideration here is physically quite different from that in [13], the singular behaviour that is
uncovered by Banks and Zaturska would appear to be fundamental, and applicable to unsteady
flows which are essentially two-dimensional in nature, and in which there is a line onto which
the flow is converging, a point that is also made in [10].

Before we examine the singular behaviour of our solution, and its implications, we consider
another feature of the results. In Figure 2(c) we show the axial and cross-flow boundary-layer
profiles atτ = 0·7985 (t = 3·9628). We see that the axial profile has just developed a
nonmonotonic behaviour. In [1] it is shown that for the related steady-flow problem such
nonmonotonic behaviour is not possible. Nor is it in the azimuthal velocity profile of the
rotating sphere problem [13]. For the present case, note that at neighbouring max, min of
W we haveWηη ? 0 which implies, from (3.9), thatWτ ? 0 which in turn precludes the
possibility of such extrema.

We turn now to the nature of the singular behaviour of the solution. First we define axial
and transverse displacement thicknesses as

δ1 =
∫ ∞

0
(1−W) dζ, δ2 =

∫ ∞
0

U dζ. (4.1)

As suggested by the results shown in Figure 2 both max(U) = Um, and the boundary-layer
thickness, grow without bound asτ approaches some finite valueτs, say. A close examination
of our results suggests, as already intimated, that the emerging singularity is of the form
discussed by Banks and Zaturska [13]. If that is the case, then the quantitiesU−1

m , δ−2
1 and

δ
− 2

3
2 will all vary linearly with t ast → ts(τ → τs). In Figure 3 we demonstrate clearly such

linear behaviour, from which we have estimatedτs = 0·799147(ts = 3·978776). However,
as we have noted above, the results obtained forW are unreliable forτ > 0·7985, and our
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Figure 3. The variation with t , as t → ts of

δ
−2/3
2 , U−1

m and δ−2
1 . The dots represent computed

results, the straight lines have been drawn for com-
parison in each case.

Figure 4.A comparison between the computed solu-

tion forU att = 3·9781 (full line), and the asymptotic

solution (4.2a) (dots) withH = H0 as in (4.4a) and

β = 0·61.
.

calculations have been continued up toτ = 0·79912 as displayed in Figure 3. Justification
for including results forτ > 0·7985, certainly forUm andδ2, emerges when we look in more
detail at the singular nature of the solution. The above results are in precise agreement with
those of Lam [9] who, in addition, demonstrates from the complete boundary-layer solution
that the transverse length scale of the eruption region shrinks like(ts − t)

3
2 ast → ts.

To study the singular behaviour in more detail we follow Banks and Zaturska [13] and
define new independent variablesτ = ts − t, η = ζτ

1
2 , and we then write, in Equations (3.8)

and (3.9)

U = τ−1∂H

∂η
, V = τ−

3
2 H, W = G. (4.2a, b,c)

If, for τ � 1,H(η, τ) = H0(η)+o(1), G(η, τ ) = G0(η)+o(1), then the leading-order terms
of the equations forH,G yield

(1
2η −H0)H

′′
0 +H ′20 −H ′0 = 0, (1

2η −H0)G
′
0 = 0, (4.3a, b)

where a prime denotes differentiation with respect toη. These equations are essentially invis-
cid in nature, and have the solution

H0 = 1
2(η − β−1 sin βη), G0 = γ, (4.4a, b)

which may be expected to hold in a central region of the boundary layer, away from its edges.
At τ = 0·7985, which corresponds toτ = 0·016, we already see in Figure 2(c) a plateau
developing in the axial velocity consistent with constantG0 in (4.4b). Furthermore, the terms
that have been omitted in the transverse momentum equation, to yield (4.3a), are of relative
orderτ 2 compared with those retained, and soO(10−4), and smaller, forτ > 0·7985. For
that reason, in spite of anomalies that may emerge inW , we have confidence in the results



Unsteady fully-developed flow in a curved pipe139

presented in Figure 3 forUm and δ2. That δ1 appears to be correctly behaved is perhaps
fortuitous, implying that any oscillatory behaviour that develops inW does not change the
axial mass flux in the boundary layer. We may estimate the constantβ in (4.4) from the last
computed velocity profileU(η, τ) by ensuring thatη = π/β coincides with the valueη = ηm

at whichU = Um. This givesβ ≈ 0·61 which compares with the value 0·71 in the problem
considered by Banks and Zaturska [13] for the rotating-sphere. In Figure 4 we compare the
computed profileU(η, τ) at τ = 0·79912 with the asymptotic profile, using (4.4a). The good
agreement adds confidence to our results overall.

5. Conclusions

In this paper we have considered the unsteady fully-developed flow in a loosely coiled pipe of
circular cross-section, when a constant pressure gradient is impulsively applied at some initial
instant. The time scale on which we have analysed the flow is one on which the axial core
flow maintains a uniform value, but the flow in the boundary layer at the pipe wall develops
significantly. In particular, there is a transverse cross flow in the boundary layer which trans-
ports fluid from the outer to the inner bend. At the inner bend, by symmetry, boundary layers
impinge and our analysis there shows that a singularity develops at a finite time, which we
interpret as an eruption of fluid from the boundary layer to the interior, or core flow. Thereafter
changes to the core flow will take place that are beyond the scope of our analysis, until a fully
developed steady state is reached. The study complements an earlier one by Stewartsonet al.
[1]. In [1] the authors consider the steady entry flow to the coiled pipe on an axial length scale
over which the core flow is uniform, but again significant developments in the boundary layer
take place. As in the present study, there is transport of fluid to the inner bend in the transverse
boundary-layer flow which ultimately erupts into the interior, heralded by a singularity in the
solution. On a longer length scale the core flow will undergo significant changes. In spite
of the similarity between the two cases, there are significant differences associated with the
structure of the singularity. The terminal stage of the unsteady flow discussed here is more
closely related to the boundary layer that erupts from the equator of a rotating sphere, started
from rest, as we have demonstrated.

Although both the present study, and the related one [1], only deal with the initial stages in
which the core flow is unchanging, it is reasonable to ask if they shed any light on the steady
fully-developed flow in a loosely coiled pipe. Before commenting further on that, we draw
attention to a related problem. Lyne [14] has considered the unsteady flow in a coiled pipe
induced by a small-amplitude oscillatory pressure gradient with zero mean. There is a second-
order time-averaged flow which, for a large suitably defined Reynolds number analogous to
the Dean number, consists of thin boundary layers on the pipe wall which collide, at the
outside bend in this case, to form a thin viscous jet along the equator. These viscous layers
surround effectively inviscid, semi-circular regions of counter-rotating flow with uniform vor-
ticity. Lyne’s work is fully confirmed by the Navier-Stokes solutions of Haddon [15]. This
problem, as that of the steady fully-developed flow, is unusual insofar as the boundary layers
exert a controlling influence on the core flow. However, only a single parameter has to be
determined in that case, namely the magnitude of the vorticity in the recirculating regions. For
the steady flow we are commenting on we have, see Section 2,wc = f (x), which is a more
complex situation.
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Returning to the steady fully-developed flow in a curved pipe, iff (x) is a monotoni-
cally increasing function ofx, and high Dean number solutions [4] of the full Equations
(2.1) and (2.2) indicate this to be the case, we observe that the transverse boundary layer
initially entrains fluid but ultimately, for someα > 1

2π , loses fluid as the boundary-layer
fluid decelerates. There are then three possible scenarios. First, the transverse boundary layer
‘empties’ before the inner bend is reached, resulting in some form of flow separation. This
would lead, in turn, to a gross distortion of the core flow, and accurate high Dean number
solutions [4] of the full equations reveal no such phenomenon. Second, the boundary layers
carry momentum up to the inner bend, where there is a collision which results in a thin viscous
jet along the equator. This scenario is appealing in view of both the present study, and that of
Stewartsonet al., where changes to the uniform core flow are initiated by an eruption of fluid,
which may be interpreted in terms of a boundary-layer collision, at the inside bend, and the
work of Lyne [14]. However, in the high-Dean-number solutions [4] there is no evidence
whatsoever of a viscous jet forming along the equator. The third, and final, scenario is that
in which a delicate balance is struck, whereby the transverse boundary layer persists up to
α = π , at which point it has lost all momentum. No collision of the boundary layers can
then take place. The high-Dean-number solutions of (2.1) and (2.2) are not at variance with
this. However, despite intensive efforts by Dennis (private communication), it has not been
possible to construct an entirely satisfactory solution of (2.11) to (2.13) for steady flow based
on this scenario. Difficulties close toα = π are encountered, and these have been commented
on by Dennis and Riley [8].

We conclude that the solution of the governing equations for steady flow, in the high-Dean-
number limit, remains unresolved. And, in spite of the fact that the flow will become unstable,
we submit that the laminar flow in this limit provides a worthwhile and stimulating challenge
for the computational fluid dynamicist.
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